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LElTER TO THE EDITOR 

Spherically symmetric monopoles are smooth 

J H Rawnsley 
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, 
Dublin 4, Eire 

Received 13 June 1977 

Abstract. The spherically symmetric monopole solutions, whose existence was rigorously 
demonstrated by Tyupkin, Fateev and Shvarts are shown to be regular everywhere. 

Tyupkin et a1 (1976) showed that the static equations of motion for a vector Yang-Mills 
field A ,  minimally coupled to the triplet 4a of Higgs scalars in an invariant potential V 
'have solutions of the form 

A, (x 1 = a ( ~ ) E , ~ x ~ L ~ ,  4a = P ( f  F a  (1)  

when V ( 4 )  =f((qb ('-q2)' for which the integrated Lagrangian 

is finite where L,, g = 1, 2, 3 are generators of SU(2) with 

[L,, Lo1 = %w-rLr, FPy =a,A, -&A, +[A,,  A y ]  

and 

Qpda = aw4a + t ( ~ p  )"ab- 

This gives rigorous justification to heuristic arguments of Polyakov (1974) and t'Hooft 
(1974). However, it is only shown that P(r)=O(r-1'2) at the origin, so that these 
solutions might be singular there. 

We have observed (Rawnsley 1977) that this proof can be extended to arbitrary 
isospin I, where the ansatz for 4 becomes 

4 m  (x) = P ( r )  Y l m  (0, CP), - 1 ~ m ~ l  (2) 
and to more general potentials. We shall suppose, for the purpose of proving regularity 
that V' (p )  = U(P)p  with U even and )U(P)(  s CP' for a constant C, which is certainly 
true for the quartic potential above. 

This proof can be further extended to include a superposition of terms of the form 
(2) for different isospins provided only that the reduced Lagrangian 2ZA has the property 
that S ~ Z A  = 0 implies 82' = 0. 

For the ansatz (2), 2'~ is given by (cf Michel er a1 1977) 
m 

2ZA z - 4 ~ 1 ~  ( ~ ' ) ' + ~ ~ 2 ( p ' ) 2 + 4 ~ - ~ ~ 2 ( 0 . - 2 ) 2 + 4 1 ( 1 +  1)p2(v- l) '+~'V(p) dr (3) 
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where cr = r’a. The proof of Tyupkin et a1 (1976) uses the derivative terms in this 
Lagrangian as a Sobolev norm and shows TA achieves its maximum for some cr, p in this 
Sobolev Hilbert space. For r # 0, SLfA = 0 are elliptic second-order equations in one 
independent variable. Standard results for elliptic operators (Palais 1 9 6 5 )  then show U 

and /3 are C” (and even real analytic if V is) except possibly at r = 0. From the 
convergence of LZA one obtains that U is finite at r = 0 and /3 = O(r-”’). We shall show 
that for 1 = 1 singularities do not in fact occur and A, and & given by ( 1 )  are C” 
everywhere. The case of general 1 is notationally more complicated and will be treated 
in greater detail elsewhere, but nevertheless the same result holds. In fact we can show 
(bm = O(r‘) at r = 0 for the general case (we thank Professor L O‘Raifeartaigh for 
suggesting this should be possible). 

The equations 8LfA = 0 for 1 = 1 are 

r’cr”(r) = cr(r)(cr(r) - l ) ( c r ( r )  - 2) + r 2 p  (r)’(cr(r) - I), 

(r2/3’(r))’  = 2/3 ( r ) (cr (r )  - 1)’+rZV’(/3(r)). 

Introducingf(r), g ( r )  for r # 0 with cr(r)  = r ’ g ( r ) ,  @ ( r )  = r f ( r )  then 

(r4f‘(r))’ = r 4 ~ ( f ( r ) ,  g ( r ) ,  r )  

F(f, g, r )  = 2fg(r2g - 2) + U(rf)f; 

(r4g’(r))’ = r4G(f(r), g ( r ) ,  r ) ;  

G(f, g, r )  = g 2 ( r 2 g  - 3 )  + f 2 ( r 2 g  - 1 ) .  
(4) 

If we put f = (f, g ) ,  F = (F, G) these equations have the form 

(r4f’(r))‘ = r 4 W ( r ) ,  r ) ,  r # O .  ( 5 )  
From (4) we see F and G are even functions of their third argument and so we may 
extend f and g as even functions for r < 0 and they still satisfy ( 5 ) .  

We can write 

F(f(r), g(rL r )  = r-’f(r)A ( r )  
with 

A(r )  = 2r - ’c r ( r ) ( c r ( r ) -2 )+rU(p( r ) )  

which is in L2[0 ,  61, S > O  fixed, for /3 = O(r-’’’) and IU(p) ( s  Cp’. Also r3f is in 
L2[0, SI so F ( f ( r ) ,  g ( r ) ,  r )  is in L’[O, 61 and hence the first equation in (4) can be 
integrated once to give 

x 4f’(x ) - Y 4 f ’ ( Y  1 

= lyx r4F(f(r), g ( r ) ,  r )  dr, 6 3 x > y > O  

= lyx r3f (r)A ( r )  dr. 

One may easily show y4f’(y) + o as y + o from the convergence of SA, so letting y + 0, 

x 4 f ’ ( x )  = J r3f(r)A ( r )  dr. 
0 

The Cauchy-Schwarz inequality then shows that if If(r) l6  ClrFk, k >t,  then If(r),J 6 
C2Ykt4. By induction, since we havef(r) = O p 2 )  initially, we obtainf(r) = O(r-’ ’). 
Similarly g ( r )  = O(r-1’2). Another iteration gives a logarithmic estimate. If, however, 
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the estimates onf and g already obtained are substituted back one can show r-'12A ( r )  is 
in L 2  and get enough room to make one more iteration showing f and g are bounded 
functions of r near r = 0. Moreover we have the once-integrated form 

x4f'(x) = lox r 4 F ( f ( r ) ,  r )  dr, x ZO. 

Making the change of variable r =xu, we have 

f'(x) = x  i,' u"FCf(xu), xu)  du, x # 0. 

Integrating once more: 

for S 3 x 3 y > 0. Since f is bounded, $(U) = u "'F(f(u),  U )  is continuous and hence the 
integral in the right-hand side of (7) converges as y +O so lim,-,of(y) exists and we 
define this to be f(0). Thus f is continuous at 0. Also 

- 1  - 1  

f(x) -f(O) = x 3'2 J, v l / '  J u'"P(uux) du dv 
0 

so that f'(0) exists and is zero. But f'(x) by (6) tends to zero as x + 0 so f'(x) is 
continuous, that is f (x)  is C Proceeding in this way one may prove by induction that 
f(x) is C" at x = 0 and hence C" everywhere. Finally, sincef and g are even there are 
functions, g which are C" with f ( r )  = f ( r 2 ) ,  g ( r )  = g ( r 2 )  showing that 

A, (x) = i(r2)~,wXpLa, 4a (x 1 = f(r2)xa 
are C" everywhere, and 4a = O(r) at r = 0. 

I wish to thank Professor J T Lewis, Professor L O'Raifeartaigh and Dr D H Tchrakian 
for many useful discussions. 
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